Positive Solutions for a Nonlocal Fourth Order Equation of Kirchhoff Type
نویسنده
چکیده
Existence and multiplicity of positive solutions for the fourth order equation u′′′′ − M( ∫ 1 0 |u ′|2 dx)u′′ = q(x)f(x, u, u′), which models simply supported extensible beams, are considered using fixed point theorems in cones of ordered Banach spaces.
منابع مشابه
On nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملSemi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation
Semi-analytical solutions for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation with arbitrary boundary conditions are derived by developing Galerkin strip distributed transfer function method. Based on the nonlocal elasticity theory for piezoelectric materials and Hamilton's principle, the governing equations of motion and boundary conditions are ...
متن کاملFinite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملPositive solutions of nonlinear fourth order boundary value problems with local and nonlocal boundary conditions
We establish new existence results for multiple positive solutions of fourth order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many nonlocal boundary conditions, with a unified approach. Our method is to show that each boundary value problem can be written as the same type of pert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007